Exercise 1.42

A watt is a measure of power (the rate of energy change) equal to $1 \mathrm{~J} / \mathrm{s}$. (a) Calculate the number of joules in a kilowatt-hour. (b) An adult person radiates heat to the surroundings at about the same rate as a 100 -watt electric incandescent light bulb. What is the total amount of energy in kcal radiated to the surroundings by an adult over a 24 h period?

Solution

Part (a)
Use dimensional analysis, starting with the given kilowatt-hour.

$$
1 \text { kilowatt-hour }=1 \mathrm{~kW} \cdot \operatorname{hix} \times \frac{1000 \mathrm{~W}}{1 \mathrm{~kW}} \times \frac{1 \frac{\mathrm{~J}}{\mathrm{sec}}}{\mathbb{W}} \times \frac{60 \mathrm{~min}}{1 \mathrm{MK}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=3.6 \times 10^{6} \mathrm{~J}
$$

Part (b)

Start with the definition of work.

$$
\begin{aligned}
\text { Work } & =\text { Power } \times \text { Time } \\
& =100 \mathrm{~W} \times 24 \mathrm{hr} \\
& =\left(100 \frac{\mathrm{~J}}{\mathrm{~K}}\right) \times\left(24 \mathrm{hr} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}}\right) \\
& =8.64 \times 10^{6} \mathrm{~J} \\
& =8.64 \times 10^{6} \not \supset \times \frac{1 \mathrm{cal}}{4.184 \not \supset} \times \frac{1 \mathrm{kcal}}{1000 \mathrm{cal}} \\
& \approx 2 \times 10^{3} \mathrm{kcal}
\end{aligned}
$$

